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“Chaos was the law of nature : Order was the dream of man” 
Henry Adams 

Abstract. We live in a dynamic world, often described as “unpredictable” and “chaotic”. 
The word “Chaos” come to mind is confusion, disorder, and lack of control. It is the 
common phenomenon in non-linear science, and special motion of non-linear systems. 
From human perspective point of view, we do not visualize the greater framework of the 
system within its boundaries. Chaos is an intrinsically richness related to its structure with 
their wide range of potential behaviours. In view of the above, the paper discusses various 
aspects: (a) the basics of chaos (physics) and presents mainly the importance of the 
nonlinearities nature in the physical systems. Finally, we will discuss for an example of 
Lorenz Equations (LE) chaotic system. We use a MATLAB computer program to 
simulate the behaviour of the LE and observe how it is sensitive to initial conditions with 
graphical aspects (phase planes and trajectory profiles) as a case study.  
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1. Introduction  

It is important to understand certain preliminary scientific concepts in order 
to obtain a better understanding of physical systems and chaotic dynamical 
systems in particular. To interpret any basic scientific research, a sound 
background of the theory of knowledge is essential. One of the principles of the 
theory of  nowledge that is important for physical modeling concerns the 
relationship between scientific theories and reality. The most of the basic laws of 
nature are deterministic, which allows determining exactly what will happen next 
from knowledge of present conditions. One of the axioms of the modern science 
is description of a physical system and the possibility of a deeper understanding 
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of the system and the prediction of the evolutions. In general, if to obtain 
complete solutions of the equations governing the mechanics of a system with 
many degrees of freedom, then intractable problems are faced. A system with 
three degrees of freedom subjected to chaotic behaviour, in which a small 
perturbation in the initial conditions grows exponentially, so that the detailed 
long-term behaviour is essentially unpredictable.  

Everyone knows what „chaos‟ is. The prominent meanings that come to 
mind are confusion, disorder, and lack of control. It is a natural phenomenon that 
provides the very interesting property of sensitivity to initial conditions (SIC). As 
the behaviour is sensitive to the initial conditions, any disturbance however small 
will grow exponentially, and leads to a different trajectory over time.  

It is the common phenomenon in non-linear science. The best-known 
example of chaos is the Butterfly Effect. Chaos was first conceptualized and 
defined through mythology, which described the origins (or birth) of humankind. 
As per Alvin Toffler, We might characterize today’s breakdown of industrial or 
“Second Wave” society as civilization “bifurcation, and the rise of a more 
differentiated, “Third Wave” society as a leap to new “dissipative structures” on 
world scale. And, if we accept this analogy, might we look upon the leap from 
Newtonianism to Prigoginianism in the same way? Mere analogy, no doubt. But 
illuminating, nevertheless. Chaos offers deep insights into these questions-
insights that bear on the nature of each as creative beings. For a human being, 
creativity is about getting beyond what we know, getting to the “truth” of things. 
That’s where chaos comes in. Being a theoretical physics concept, let us focus on 
as: Twentieth-century theoretical physics came out of the relativistic revolution 
and the quantum mechanical revolution. It was all about simplicity and 
continuity (in spite of quantum jumps). Its principal tool was calculus. Its final 
expression was field theory. Twenty-first-century theoretical physics is coming 
out of the chaos revolution. It will be about complexity and its principal tool will 
be the computer. Its final expression remains to be found. Thermodynamics, as a 
vital part of theoretical physics, will partake in the transformation. 

A dynamical system is a system which evolves with time from a prescribed 
initial condition(s) with a well defined rule(s). It is important to understand 
certain preliminary scientific concepts in order to obtain a better understanding of 
physical systems with its chaotic dynamical systems.  

Why have scientists, engineers, physicists and mathematicians become 
intrigued by chaos? The answer to that question has two parts: (a) The study of 
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chaos has provided new conceptual and theoretical tools enabling us to categorize 
and understand complex behaviour; (b) chaotic behaviour seems to be universal. 
Even chaotic behaviour shows qualitative and qualitative universal features, 
which are independent of the details of the particular system.  

2. The Discovery of Chaos 
According to the Encyclopaedia Britannica the word “chaos” is derived from 

the Greek “χαoσ” and originally meant the infinite empty space which existed 
before all things. The  later Roman conception interpreted chaos as the original 
crude shapeless mass into which the Architect of the world introduces order and 
harmony. In modern usage which we will adopt chaos denotes a state of disorder 
and irregularity.  

The laws of science aim at relating cause and effect, which predict various 
events thousands of years in advance. But there are other natural phenomena that 
are not predictable though they obey the same laws of physics like the weather, 
the flow of a mountain stream, the roll of a dice phenomenon. It was believed that 
precise predictability can in principle be achieved, by gathering and processing 
sufficient amount of information.  

For theoretical physicists the revolution started a few decades ago. Chaos is 
a purely mathematical concept; it is an undeniable mathematical fact. For a 
continuous dynamical system, the necessary number of degree of freedom for 
observing chaos is three or more. Chaos is a few decades old. It belongs in the 
field of theoretical physics, where it stands for undeniable, theoretical yet 
mathematical facts.  

Literally, the word ‟chaos‟ means the total disorder or utter confusion. The 
unpredictable and complex evolution of deterministic systems is commonly 
referred to as chaos. The randomness associates with a chaotic system come from 
the intrinsic dynamics of the system. The fundamental characteristic of a chaotic 
system is its extreme sensitivity to the initial conditions, i.e., the phase space 
trajectories started with slightly different initial conditions will diverge 
exponentially. Thus a very small variation in the initial condition produces an 
infinitely large effect on the long term behaviour of the system. For the same 
reason, the long term prediction of a chaotic system is practically impossible.  

The first numerical evidence of chaos theory was given by Edward Lorenz, 
the father of chaos theory, a meteorologist at MIT in the early 60‟s.  In the 
computer's memory, six decimal places were stored whereas only three appeared 
on the printout. An error of one part in a thousand had changed his weather 



K K Chand and M K Das 

Orissa Journal of Physics, Vol. 27, No.2,-  Vol. 29, No.1 - February 2022 92 

patterns drastically. Lorenz called his discovery “the butterfly effect” - the notion 
that a butterfly flapping its wings in Bombay will set off a tornado in Japan a 
week later. Technically, the butterfly effect is called sensitive dependence on 
initial conditions, which is one of the hallmarks of chaos.   

He described chaos in these terms: “when the present determines the future, 
but the approximate present does not approximately determine the future”. He 
observed certain non repeating solutions while simulating a truncated version of 
atmospheric convection.   

However, the history of chaos theory starts from the time of the renowned 
French mathematician Henry Poincare. There was a belief that the complete 
evolution of a physical system can be predicted if its dynamical equations and the 
corresponding initial conditions are given. The predictability of the dynamical 
system definitely depends on the evolution of this error in computations. After 
Lorenz‟ discovery of chaos in the convection model, chaos has been observed in 
many nonlinear systems such as lasers, population models and electronic circuits 
and so on.  

The advent of chaos introduces us to a new type of attractor – a strange 
attractor or a chaotic attractor. Geometrically a strange attractor is a fractal, i.e. it 
reveals more detail as it is increasingly magnified. In strange attractors, arbitrarily 
nearby orbits diverge exponentially fast and so stay together for only a short time.   

2.1 Definition of Chaos  

There is still no universally accepted definition for chaos. The definition 
given is more in terms of the descriptive properties of chaotic nonlinear systems. 
A general definition of chaos is “Chaos is defined as the quality of a deterministic 
mathematical system in which an extreme sensitivity to initial conditions exists”. 
The mathematical calculations involved in modelling chaos theory requires large 
numbers of calculations, often iterated (repeated), thus this field has blossomed in 
parallel with the computer revolution. Let us define chaos as follows: Chaos: A 
dynamical system S is chaotic if: (a) The set of periodic points in S is dense. (b) S 
is transitive. (c) S depends sensitively on initial conditions. (d) The linear 
equation obeys the rule: 

 1 1 2 2 1 1 2 2 1 2( ) ( ) ( ), ,f a x a x a f x a f x a a+ = +  are constants 

2.2 Mathematical View of Chaos  
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As Chaos is so young that mathematicians still have not decided on the 
definition of chaos!! Based on the classical notions, the evolution of an initial 
condition 0x  under an operator ′Φ  does not behave chaotically if:  

0( )x′Φ goes to an equilibrium when t →∞   

0( )x′Φ goes to a periodic orbit when t →∞   

0( )x′Φ escapes to t →∞   

A system is chaotic if (a subset of the) orbits are confined to a bounded region, 
but still behave unpredictably. A good example is the Lorenz Equations with σ  
= 10, r = 28 and b = 8/3. The displays for these parameters in Lorenz equation are 
shown in the below figures. Arbitrary orbits seem to accumulate on an object 
called the butterfly attractor, Figure 1. Chaotic behaviour means that this is not 
true, in the sense that fairly quickly the two orbits start to behave very differently 
and there is no trace or “memory” of the fact that they were once so close. This 
property is called sensitive dependence on initial conditions and can be roughly 
translated as “all decimal places matter.” 

 
 

Fig. 1: The Lorenz Attractor  Figure 2: The Ideal Pendulum 
 
2.3 Phase Plane Analysis of Ideal Pendulum  

The system of an ideal pendulum, simply known as simple pendulum, 
Figure 2, is a weight-a bob of mass-suspended from a pivot so that it can swing 
freely. The bob moves in two dimensions, so the system “we need only two 
pieces of information to completely describe the physical state of the system: 
position and velocity.” These two observable quantities are often referred to as 
phase variables. As only one of the coordinates is independent, so the system has 
only one degree of freedom. 
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Fig. 3: Oscillation of Ideal Pendulum      Fig. 4: Phase-Plane of Ideal  Pendulum  

The phase-space is simply a way of graphically representing the way a 
system behaves. Let us think a simple frictionless pendulum. This is a dynamical 
system; in other words a system that changes with time. One way to describe this 
system is to graph how the bob position changes from moment to moment, Figure 
3. If we define the position of the pendulum as zero when the bob is hanging 
straight down, then left of centre is negative, and right of centre is positive. As 
time progresses, the bob swings to one side then the other. Graphically this looks 
like a sine wave, as shown, Figure 3. Most people are familiar with the sine wave 
as one form of periodic behaviour.  

For a pendulum steadily losing energy to friction, all trajectories spiral 
inward to a point that represents a steady state, Figure 4. We call this point an 
attractor of the system and it is a single point; the attractors exist in the phase 
space, and one of the most powerful inventions of modern science.   

In phase-space, its trajectory would not close, but would spiral inward until 
the bob reached a steady state of zero position and zero velocity shown in Figure 
4. One can think of the attractor of a periodic system as that point that the system 
would eventually collapse to in phase-space if no external forces act upon it.  

2.4 Modelling of Lorenz Equations 

In 1963, the physicist E. Lorenz revolutionized the situation demonstrating 
that the qualitative nature of atmospheric turbulence which obeys the Navier-
Stokes complex partial  differential equations is representable by a simple 
nonlinear model of the third order (Lorenz equation):  
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dt dt dt

σ= − = − + − = −      (1) 

where  σ, r and b are parameters. We choose  σ  = 10, b = 8/3 and r = 28 and let 
the initial conditions be x(0) = y(0) = z(0) = 0.1 at t = 0. The solutions of system 
(1) look like nonregular oscillations. The trajectories in the state (phase) space 
can approach the limit set (attractor) featuring very sophisticated form. Time step 
is h = 0.02 and total number of steps are nn = 2000. Using MATLAB, we create 
the following script chaos.m.  

2.5 Performance Analysis: Phase Space and Trajectories Profiles  

These hidden orderly patterns in chaotic behaviour can be presented in the 
so-called phase space. Phase spaces are abstract mathematical spaces, that is a set 
of structured points, normally with a high number of coordinates (each particular 
variable taken into account by the model is associated to a different coordinate), 
so that each point in this abstract space represents a complete and detailed state 
which the analysed system could eventually reach.   

At the basic level, phase-space is simply a way of graphically representing 
the way a system behaves. Take for example a simple, frictionless pendulum. 
This is a dynamical system; in other words a system that changes with time. One 
way to describe this system is to graph how the bob position changes from 
moment to moment.   

MATLAB is a simulation tool which can be used to simulate linear or non-
linear, continuous dynamic systems. The MATLAB codes for the proposed 
Lorenz equations are established based on Equation (1). This model has three 
parameters which will affect the behaviour in addition to the parameters 
associated with the original equations. Simulating continuous chaotic systems 
requires that an appropriate step size be chosen. This is a hidden parameter within 
the system model (typically set to 0.01s or 0.02s), used to obtain the desired 
behaviour.  
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2.6  MATLAB Source Codes for Lorenz Equations Simulation (chaos.m)  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2.7 Simulation Outputs  

The phase planes for the Lorenz equations shown in Figures 5-8 and 
the trajectories of various variables with time shown in Figures 9-11 
generated by MATLAB codes. These shapes are the same as those for the 
corresponding continuous systems and which confirms the chaotic 
behaviour of the discrete systems is stable. 
 

% MATLAB Codes for Simulation of Lorenz Equations 
% Aim: to solve the Lorenz equations 
% to plot phase planes and trajectory profiles 
% dx/dt=sigma*(y-x); dy/dt=-x*z+r*x-y; dz/dt=x*y-b*z 
sig=10.0;    %  Parameter 
b=8/3;        %    -do-   
r=28;          %    -do- 
t(1)=0.0;     %  Initial t 
x(1)=0.1; y(1)=0.1; z(1)=0.1; % Initial x,y,z 
dt=0.02;  % Time step 
nn=2000; % Number of time steps 
for k=1:nn % Time loop 
      fx=sig*(y(k)-x(k));               % RHS of x equation 
      fy=-x(k)*z(k)+r*x(k)-y(k);  % RHS of y equation 
      fz=x(k)*y(k)-b*z(k);            % RHS of z equation 
      x(k+1)=x(k)+dt*fx;              % Find new x 
      y(k+1)=y(k)+dt*fy;              % Find new y 
      z(k+1)=z(k)+dt*fz;               % Find new z 
      t(k+1)=t(k)+dt;                     % Find new t 
end                                              % Close time loop 
    % Phase Planes Profiles 
    % 
    figure(1) 
    plot(x,y,'-k') % Plot x vs y 
    xlabel('\bf x'); ylabel('\bf y'); % Label axes 
    grid on 
    title('\bf Phase Plane Simulation of Lorenz 
Equations(x~y)') % Title 
    % 
    figure(2) 
    plot(y,z,'-k') % Plot y vs z 
    xlabel('\bf y'); ylabel('\bf z'); % Label axes 
    grid on 
    title('\bf Phase Plane Simulation of Lorenz 
Equations(y~z)') % Title 
    %  

figure(3) 
    plot(z,x,'-k') % Plot z vs x 
    xlabel('\bf z'); ylabel('\bf x'); % Label axes 
    grid on 
    title('\bf Phase Plane Simulation of Lorenz Equations(z~x)') 
% Title 
    % 
    figure(4) 
    plot3(x,y,z,'-k') 
    grid on 
    title('\bf Phase Plane Simulation of Lorenz 
Equations(x~y~z)') % Title 
    xlabel('\bf x'); ylabel('\bf y'); zlabel('\bf z');  
    % 
    % Trajectories Profiles 
    % 
    figure(5) 
    plot(t,x,'-k') % Plot x vs t 
    grid on 
    title('\bf Trajectory Simulation of Lorenz Equations(t~x)') % 
Title 
    xlabel('\bf t'); ylabel('\bf x'); % Label axes 
    % 
    figure(6) 
    plot(t,y,'-k') % Plot y vs t 
    grid on 
    title('\bf Trajectory Trajectory of Lorenz Equations(t~y)') % 
Title 
    xlabel('\bf t'); ylabel('\bf y'); % Label axes 
    % 
    figure(7) 
    plot(t,z,'-k') % Plot z vs t 
    grid on 
    title('\bf Trajectory Simulation of Lorenz Equations(t~z)') % 
Title 
    xlabel('\bf t'); ylabel('\bf z'); % Label axes 
    % 
  % End of the Program  
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          Fig. 5: Phase Plane of x~y         Fig. 6: Phase Plane of y~z 

 
Fig. 7: Phase Plane of z~x         Fig. 8: Phase Plane of x~y~z 

 
Fig. 9: Trajectory Profile of t~x        Fig. 10: Trajectory Profile of t~y 

 
Fig.11: Trajectory Profile of t~z 
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3.0 Applications of Chaos 

Chaos has a body of knowledge comprised of theoretical elements including 
systems like nonlinearity, diversity, disorder, disequilibrium, instability, and 
unpredictability. It is applied in many scientific disciplines like geology, 
mathematics, programming, microbiology, biology, computer science, 
economics, engineering, finance, meteorology, philosophy, physics, politics, 
population dynamics, psychology, and robotics. For chaos to be theoretically 
accepted with a body of knowledge requires a model which demonstrates 

applications.  

4.0 Conclusion 

The discovery of chaos has far reaching implications in many branches of science 
and engineering. It has provided physicists, mathematicians and scientists with a 
new way of studying and understanding the natural world. The discovery of 
chaos has created a new paradigm in scientific thinking. The world is not as 
strictly deterministic as was once believed under classical mechanics. Computers 
have played a major role in the discovery and subsequent developments in this 
field. The computer is to chaos what cloud chambers and particle accelerators are 
to particle-physics.  It has been implicated in areas ranging from heart failure, 
meteorology, economic modelling, and population biology to chemical reactions, 
neural networks, fluid turbulence and more speculatively even manic-depressive 

behaviour. Chaos has provided us with a new way of looking at nature, which has 
helped us to find order in places where we earlier found only disorder in many 
different areas ranging from sciences, mathematics and engineering to social 
systems.  
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